
Multivariate Statistics Week 02: Describing and
displaying multivariate data

Noah Silbert

September 1, 2017

Univariate expected values and means

The expected value of a random variable X is denoted E[X]. For a
continuous random variable:

E[X] =
∫ ∞
−∞

xf (x)dx

For a discrete random variable:

E[X] =
∞∑

i=−∞
xip(xi)

With a sample of a univariate random variable xi , i ∈ 1, 2, . . . ,N, we
approximate p(x) with 1

N , and calculate the (sample) mean as

x̄ = x1 + x2 + · · ·+ xn
N = 1

N

N∑
i=1

xi .

Means in R

We can use R to generate a sample of a normally distributed
random variable, then use linear algebra and the j vector to
calculate this easily (we could also just use the function mean()):

N = 100
x = matrix(rnorm(N,17,3.2),nrow=N,ncol=1)
j = matrix(1,nrow=1,ncol=N)
x.bar = (1/N)*j%*%x

Visualization

0

5

10

10 15 20 25
x

co
un

t

x.bar

[,1]
[1,] 17.12362

Multivariate means

With multivariate data, each observation is a vector rather than a
single scalar. Hence, instead of a single expected value, we get a
vector of expected values: one for each dimension of the
multivariate random variable.

Multivariate data is typically organized with N observations in the
rows and P variables in columns. So, for example, if we measure the
height and weight (P = 2) of 100 people, we would have a 100× 2
matrix.

Multivariate data in R

X = cbind(rnorm(N,162,10),rnorm(N,54,5))
colnames(X) = list("Height","Weight")

There are a few packages and functions available for making a
matrix of scatterplots. The best one I’ve found so far is the
scatterplotMatrix() function from the car (Companion to
Applied Regression) package. We can install this package and
invoke it like this (without the # before the first line):

#install.packages("car")
library(car)

scatterplotMatrix(X,cex=.75,pch=19,cex.axis=1.25)

Height

45 55 65

14
0

17
0

140 170

45
55

65 Weight

Multivariate means in R

In this case, the data are two-dimensional, so we will have a length
2 mean vector (one mean for height, one for weight). We can use
the j matrix to calculate this, too (N and j were defined above; we
could also use colMeans()):

X.bar = (1/N)*j%*%X
X.bar

Height Weight
[1,] 162.5496 53.71652

Variance
The variance of a univariate random variable is given by:

E[(x − µ)2] =
∫ ∞
−∞

(x − µ)2f (x)dx continuous

=
∞∑

i=−∞
(xi − µ)2p(x) discrete

That is, the variance is the expected value of the squared deviation
of the data from the mean. The standard deviation is the square
root of the variance.

For a sample, we can estimate the variance as:

Var(x) = 1
N − 1

N∑
i=1

(xi − x̄)2

Variance formulas, bias, MLE

Note that there are two formulas for the variance, one with the
fraction 1

N , and one with the fraction 1
N−1 .

For normally distributed data, the former is the maximum likelihood
estimate, but it’s biased, whereas the latter is unbiased, but it is not
the maximum likelihood estimate.

The bias of a statistical estimator θ (e.g., a mean, variance, etc. . .)
is E[θ̂ − θ].

We will return to the statistical concept of maximum likelihood
estimation later.

Covariance

With multivariate data, we have variances for each variable, but we
also have covariances between variables. The covariance for two
random variables X and Y is the expected value of the
cross-product of their deviations:

Cov(X ,Y) = σxy = E[(X − E(X))(Y − E(Y))]

Note that this just reduces to the definition of variance when
X = Y :

Cov(X ,X) = σxx = E[(X − E(X))(X − E(X))]
= E[(X − E(X))2]

Sample covariance

A useful linear algebra fact: (ABC)T = CT BT AT

A useful linear algebra definition: A matrix A is idempotent if
AA = A.

The sample covariance matrix for a data matrix X can be expressed
in linear algebra notation as follows (I and J are N × N):

Σ = 1
N − 1

(
X− 1

N JX
)T (

X− 1
N JX

)
= 1

N − 1XT
(

I− 1
N J
)T (

I− 1
N J
)

X

= 1
N − 1XT

(
I− 1

N J
)

X

Variance and covariance in R

We can use the formula above to calculate a covariance matrix:

J = matrix(1,N,N)
I = diag(1,N,N)
S = (1/(N-1))*t(X)%*%(I-(1/N)*J)%*%X
S

Height Weight
Height 88.0559814 0.8044789
Weight 0.8044789 20.9168399

Covariance and correlation
The correlation between two variables x and y is defined as

ρxy = σxy√
σxxσyy

We can calculate the correlation matrix using linear algebra by by
pre- and post-multiplying the covariance matrix by a diagonal matrix
containing the reciprocals of the standard deviations:

W = diag(1/sqrt(diag(S)),2,2)

The inner call to diag() extracts the diagonal values from S, the
square roots of these are then put into the denominators of fractions
(with numerator 1), after which the outer call to diag() puts these
reciprocal variances into the diagonal of a new matrix (i.e.,
Wij = 1√

σij
if i = j , 0 otherwise).

Calculating the correlation matrix

If we pre- and post-multiply S by W, we get the correlation matrix:

R = W%*%S%*%W
R

[,1] [,2]
[1,] 1.00000000 0.01874508
[2,] 0.01874508 1.00000000

We could also use the functions cov() and cor() to get covariance
and correlation matrices, respectively, but it’s important to
understand the linear algebra of this stuff for many of the topics
we’ll cover later on.

for loops
We could also use for loops to calculate the correlation matrix. We
typically wouldn’t do so, since we know how to use linear algebra
and basic R functions, but for loops are very useful, so we’ll
introduce them here.
A for loop in R looks like this:

for(i in 1:5){
code that does something interesting at step i

}

We can write a for loop within a for loop (within a for loop,
etc. . .) as necessary:

for(i in 1:5){
for(j in 1:8){

code that does something at step i, j
}

}

Calculate correlation with a for loop

nrc = dim(S) # get dimensions of S
nr = nrc[1] # number of rows
nc = nrc[2] # number of columns
M = matrix(0,nr,nc) # initialize a matrix of zeros
for(ri in 1:nr){ # loop through rows

for(ci in 1:nc){ # loop through columns
M[ri,ci] = S[ri,ci]/sqrt(S[ri,ri]*S[ci,ci])

}
}
M

[,1] [,2]
[1,] 1.00000000 0.01874508
[2,] 0.01874508 1.00000000

Some points about R

A few things in the code on the previous slide are worth noting.

First, instead of just using the number 2, we extracted the
dimensions of S. Using (properties of) defined variables makes your
code more robust. With code like this, we could calculate a new,
larger S, and the code above would still work. If we had hard-coded
2 rows and 2 columns, it wouldn’t.

Second, the index variables ri and ci iterate through vectors (1:nr
and 1:nc). ri and ci are assigned the values in the vectors one by
one. We need to be careful to define the vectors appropriately and
not to overwrite ri or ci with the code inside the loop(s).

Finally, note that we indexed the rows and columns of our matrices
M and S using square brackets and ri and ci (e.g., the rith row
and cith column of M is given by M[ri,ci]). You can get a whole
row or column with M[ri,] and M[,ci], respectively.

Plotting multivariate data in R

There are a number of ways to visualize multivariate data, but the
most useful, straightforward way to do so is, in my opinion, with
scatterplots. We saw a matrix of scatterplots above, but we’ll take a
few steps back and cover some more visualization issues here.

We can make a simple bivariate scatterplot in R using the plot()
function. This function has two required arguments: two data
vectors. The first will be on the x axis, the second on the y axis.

You can also specify a number of other properties, such as the type
of symbol to be plotted (using the argument pch), the type of line
(if you’re using lines, using lty), the title and axis labels, and lots
of other things. We’ll cover some of these over the course of the
semester.

Example with base graphics
plot(X[,1],X[,2],pch=19,col="red2",cex=1.5)

140 150 160 170 180 190

45
50

55
60

65

X[, 1]

X
[,

2]

Example with ggplot2
X.df = data.frame(X)
ggplot(X.df,aes(x=Height,y=Weight,color=I("red2"))) +

geom_point(size=3,alpha=.75)

45

50

55

60

65

140 160 180

Height

W
ei

gh
t

Plotting multivariate data in R (2)

If you have more than two variables, a single bivariate scatterplot
isn’t enough. In addition, it is useful to also visualize the
distribution of each variable on its own. This is what we saw above
with the scatterplotMatrix() function above. We’ll explore
some of its features again here.

Y = cbind(X,rnorm(N,100,15))
colnames(Y) = list("Height","Weight","IQ")

scatterplotMatrix(Y,pch=19,cex=2)

Height

45 55 65

14
0

17
0

45
55

65 Weight

140 170 70 100 130

70
10

0
13

0IQ

scatterplotMatrix(Y,pch=15,diagonal="histogram")

x

F
re

qu
en

cy Height

45 55 65

14
0

17
0

45
55

65

x

F
re

qu
en

cy Weight

140 170 70 100 130

70
10

0
13

0

x

F
re

qu
en

cy IQ

scatterplotMatrix(Y,pch=20,diagonal="qqplot")

Height

45 55 65

14
0

17
0

45
55

65 Weight

140 170 70 100 130

70
10

0
13

0IQ

scatterplotMatrix(Y,ellipse=T,smoother=F,reg.line=F)

Height

45 55 65

14
0

17
0

45
55

65 Weight

140 170 70 100 130

70
10

0
13

0IQ

A few other things in R & RStudio

If you need help with a function in RStudio, just type a ? before it
(e.g., ?scatterplotMatrix). Be warned, though, that R help files
can be remarkably unhelpful.

Given that, there are some useful R resources online. Quick-R gives
good (though sometimes slightly outdated) information on a lot of
basic R. You can also often find a lot of good questions and answers
on StackOverflow (which also has a lot of questions and answers
about other programming languages).

If you want to save a figure to a file, there are a number of functions
that will do that. For example, you can call png(), pdf(), jpeg(),
bmp(), or tiff() prior to your figure-generation code, then call
dev.off() to turn off the graphics device your code created.

http://www.statmethods.net/index.html
https://stackoverflow.com/questions/tagged/r

Saving a figure to a file

png('scatterplot_matrix.png',width=750,heigh=750)
scatterplotMatrix(Y,ellipse=T,pch=17,cex=2,

col=c("blue3","red3","orange3"),
reg.line=F,cex.axis=2)

dev.off()

pdf
2

